SunQuarTeX-enart Test
Subtitle Here
Abstract
This is an abstract.
1 First
This is a reference[1, p. 1].
Proof
Proof. Obvious as follows \[ \mathbb R \approx \mathbb R \times 2 \preccurlyeq \mathbb R \times \mathbb N \preccurlyeq \mathbb R \times \mathbb R \approx \mathbb R \implies \mathbb R \times \mathbb N \approx \mathbb N \times \mathbb R \approx \mathbb R \]
2 Second
\(L_i \times C_j\) | \(2\) | \(\mathbb N\) | \(\mathbb R\) |
\(2\) | \(4\) | \(\mathbb N\) | \(\mathbb R\) |
\(\mathbb N\) | \(\mathbb N\) | \(\mathbb N\) | ? |
\(\mathbb R\) | \(\mathbb R\) | ? | \(\mathbb R\) |
\(L_i^{C_j}\) | \(2\) | \(\mathbb N\) | \(\mathbb R\) |
\(2\) | \(4\) | \(\mathbb R\) | \(2^{\mathbb R}\) |
\(\mathbb N\) | \(\mathbb N\) | ? | ? |
\(\mathbb R\) | \(\mathbb R\) | ? | ? |
References
[1]
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Closing the gap to human-level performance in face verification. deepface,” in Proceedings of the IEEE computer vision and pattern recognition (CVPR), p. 6.