SUNQUAR**TEX** Example - enpre Subtitle Here

sun123zxy

SUNQUAR**TEX**

2024-02-221

¹Last modified on 2024-02-22.

Texts

- left bar.
 - narrow left bar.

- right bar.
- wide right bar.

Lists

- This is a list.
- A compact list.

Wow.

- This is a list.
- A sparse list.

A definition list below.

Reflexivity $a \sim a$

Antisymmetry $a \leq b \land b \leq a \implies a = b$

Citations

Blah [Tai+, 1, chapter 3, sec. 2, theorem 3]. Blah blah [Tai+; TP]. Blah blah blah².

²This is a footnote

Code

```
#include<bits/stdc++.h>
using namespace std;

int main(){
    return 0; // 返回 0
}
```

```
example : (\forall x, p x \rightarrow r) \rightarrow ((\exists x, p x) \rightarrow r) := by
intro h \langle a, hpa \rangle -- you may also 'reases' explicitly
exact h a hpa
```

Tables

$L_i \times C_j$	2	\mathbb{N}	\mathbb{R}
2	4	\mathbb{N}	\mathbb{R}
\mathbb{N}	\mathbb{N}	\mathbb{N}	?
\mathbb{R}	\mathbb{R}	?	\mathbb{R}

(a) Products

$L_i^{C_j}$	2	\mathbb{N}	\mathbb{R}
2	4	\mathbb{R}	$2^{\mathbb{R}}$
\mathbb{N}	\mathbb{N}	?	?
\mathbb{R}	\mathbb{R}	?	?

(b) Powers

Table: Several results on cardinality

Referable Table 1a.

Figures

Figure: This is a figure

Referable Figure 1.

Computations

Complex side by side. (Figure 2, Figure 2a, Figure 2b)

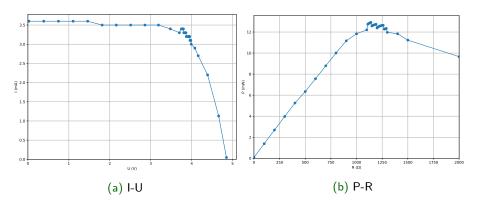


Figure: solar panel

Theorems I

Theorem (Test)

This is a theorem.

$$\sum_{d|n} \varphi(d) = n$$

Proof.

This is a proof ended with a display math.

$$\sum_{d|n} \mu(d) = [n=1]$$

Theorems II

Proof.

This is a really reall

Definition

This is a definition.

Example (An example)

This is an example.

Solution

This is the solution to the example.

Theorems III

Exercise

This is an exercise.

Remark

This is a remark of Exercise 1.

Lemma

This is a lemma.

Corollary

This is a corollary of Theorem 2.1.

Theorems IV

Proposition

This is a proposition.

Conjecture

This is a conjecture.

References I

- [Tai+] Y Taigman et al. "Closing the gap to human-level performance in face verification. deepface". In: *Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR)*. Vol. 5, p. 6.
- [TP] M. Turk and A. Pentland. "Eigenfaces for Recognition". In: Journal of Cognitive Neuroscience 3.1 (), pp. 71–86.